II-VI Silicon Carbide Substrates

We are a leading worldwide supplier of high quality single crystal SiC (silicon carbide) substrates. We have state-of-the-art product development and manufacturing facilities at three locations within the United States – Pine Brook (NJ) and Starkville (MS). Our continually evolving technology and IP portfolio are made possible by a comprehensive understanding of crystal growth and materials processing acquired over decades of sustained R&D and manufacturing. We are committed to excellence in all that we do and consider customers to be our partners with total satisfaction as our primary goal. This is achieved through innovation, teamwork and a dedication to quality in the development of leading-edge, highly specialized products and solutions focused on customer growth and success. We utilize our II-VI global network of technical and sales offices to facilitate timely communication, service and feedback. Our products are key components “Enabling Tomorrow’s Technology” across a wide variety of fast growing markets including mobile communications, RF and high-power electronics and semiconductor equipment manufacturing.

II-VI Silicon Carbide Substrates

Silicon Carbide Substrates
PO BOX 840
T. +1 973-227-1551

Magneto-optic Materials
T. +1 973-979-9594


Silicon Carbide

Bismuth-doped Iron Garnet


Machine R&D and Process Development

The engineers, technicians, and scientists of the II-VI ADVANCED MATERIALS engage in diverse materials research and development as well as materials production process development. These activities support the II-VI family of products to improve existing material production and develop production methods for emerging materials and often involve a synergistic blend of Material Sciences, Process Automation, Process Equipment Design, Technology Transfer, and Computer Modeling. With an average experience level of over 15 years per member, the staff of the II-VI ADVANCED MATERIALS is capable of efficiently transferring new material processes from laboratory scale to pilot scale to full scale production operation.

Process Equipment Design

Much of the II-VI material process production equipment is designed and build in house. The core experience in this area is multidisciplinary with a strong electrical and mechanical engineering emphasis. Concomitant with Process Automation, and the material sciences process equipment design is one of the main outputs of the II-VI ADVANCED MATERIALS. Typical design development involves a mix of iterative analysis and prototyping to converge to an optimum design. II-VI ADVANCED MATERIALS has over 100 years of experience to draw upon in this endeavor. As a result the application of best practices and reusable design is common. II-VI ADVANCED MATERIALS typically ‘test pilots” new designs, operates them in a full production mode and generates the necessary engineering documentation to replicate and support the production scale-up of an emerging material process.

Computer Modeling

The physics of many II-VI materials production processes is often not easy to directly observe or measure. In some cases, computer models of thermal or electromagnetic fields are required to understand the underlying physical processes. With these models in support of experimental discovery, II-VI ADVANCED MATERIALS scientists and engineers are capable of developing process equipment and methods with increasing confidence that the desired process “window” can be quickly achieved and maintained.


II-VI Advanced Materials manufactures and markets high quality single crystal SiC substrates for use in the wireless infrastructure, RF electronics and power switching industries. We continually make significant investments in research and development that ensure our crystal growth technology and wafer manufacturing practices remain state of the art, and support our commitment to become the world’s leading supplier of high performance, high quality SiC and other wide bandgap materials. II-VI Advanced Materials now produces and ships wafers from two world-class, ISO 9001 certified SiC wafer production facilities, one in Pine Brook, NJ, and the other in Starkville, MS in order to meet a rapidly increasing, world-wide customer base.

Process Automation

Using the latest software and computer hardware techniques and systems, the II-VI ADVANCED MATERIALS develops control equipment and architectures to automate material production and test processes in all stages of the development life cycle – from laboratory to production scale processes. These systems use conventional and proprietary sensing and actuation technologies, rapid prototyping, and reusable/modular software and hardware components. Common objectives of the resulting systems include robust data acquisition, SPC, intuitive operator interfaces, programmable recipe sequences, high reliability, and high process repeatability. The best automation engineering practices are continually developed and deployed companywide.

Technology Transfer

In II-VI ADVANCED MATERIALS’s supporting role, the transfer of production equipment and processes for emerging materials from pilot scale to full-scale production is an important activity for commercialization. Technology transfer involves many facets, often including the creation of process equipment, software, process recipes, work instructions, quality and production control procedures, user/maintenance documentation, and calibration procedures. In the longer term II-VI ADVANCED MATERIALS supports the technology transfer via technical support and process equipment upgrades.

Research & Development

II-VI Advanced Materials SiC Devision carries out extensive Research & Development in the field of SiC and other wide bandgap materials utilizing unique, state of the art technology and the latest manufacturing techniques. WBG written publications and presentations include:

  • T. Anderson et al, “Advanced PVT Growth of 2 & 3 Inch Diameter 6H SiC Crystals”, Mat. Sci. Forum, Vol. 457-460 (2004), pp. 75-78
    M. Yoganathan et al, “Growth of Large Diameter Semi-Insulating 6H-SiC Crystals by Physical Vapor Transport”, Mat. Res. Soc. Symp. Proc. Vol. 815 (2004) J5.9.1
  • A. Gupta et al, “6H and 4H-SiC Bulk Growth by PVT and Advanced PVT (APVT)”, Mat. Res. Soc. Symp. Proc. Vol. 815 (2004) J5.24
    I. Zwieback et al, “Growth of Large Diameter SiC Crystals by Advanced Physical Vapor Transport”, ECSCRM 2004 Conference Proceedings (Bologna, Italy), To Be Published
  • T. Anderson et al, “Growth of Undoped (Vanadium-Free) Semi-Insulating 6H-SiC Single Crystals”, ECSCRM 2004 Conference Proceedings (Bologna, Italy), To Be Published
  • C. Martin et al, “Sub-Surface Damage Removal in Fabrication & Polishing of Silicon Carbide”, Compound Semiconductor MANTECH Conference Proceedings, May, 2004, pp. 291-294
  • E. Emorhokpor, et al, “Characterization and Mapping of Crystal Defects in Silicon Carbide”, Compound Semiconductor MANTECH Conference Proceedings, May, 2004, pp. 139-142

Government Programs
The development of advanced SiC crystal growth, wafer fabrication and substrate polishing technologies at WBG have been, and continue to be supported by a variety of Government programs. Development is focused on these critical enabling technologies and their transition to manufacturing so as to assure a domestic source for current and next generation Department of Defense (DoD) system requirements. These requirements include critical high frequency and high power components with dramatically enhanced performance.
Programs are currently being funded by: Air Force Research Labs (AFRL), Office of Naval Research (ONR), Missile Defense Agency (MDA),
Past programs have been funded by: DoD Title III Office, Defense Advance Research Projects Agency (DARPA),

Quality & Environmental Management

Our SiC crystal growth and wafer manufacturing processes have been certified to the International Quality Standard ISO 9001:2008, since 2003 by the internationally known certification firm Det Norske Veritas. Customer on-site audits and visits are welcome. Visit arrangements should be made through our Quality Manager (see Contact Us page).

In 2009, II-VI Advanced Materials Quality System expanded its scope to include the requirements of ISO 14001:2004, the environmental management system (EMS) standard. An EMS certification expresses our commitment to a formal structure for ensuring environmental concerns are addressed, met and anticipated to minimize any negative impact our business may have on the environment.

II-VI Advanced Materials commitment to our Customers, Quality and sound Environmental practices is expressed in our Quality & Environmental Policy.

Our Quality & Environmental Policy

ISO9001 Certificate
ISO14001 Certificate
RoHS Compliance*


II-VI Incorporated Wins Best Strategic Partner Award from Dynax Semiconductor as Supplier of Silicon Carbide Substrates for Wireless RF Devices

By II-VI  /  January 9, 2020
II‐VI Incorporated (Nasdaq: IIVI), a leader in compound semiconductors, today announced that it has won the Best Strategic Partner Award from Dynax Semiconductor as their supplier of silicon carbide substrates for wireless RF devices. Dr. Naiqian Zhang, founder and CEO of Dynax Semiconductor, presented II-VI with the award for its outstanding supplier performance in quality, delivery, and service. II-VI supplies Dynax Semiconductor with semi-insulating silicon carbide (SiC) substrates that enable gallium nitride-on-silicon carbide (GaN-on-SiC) RF power amplifiers deployed in 4G...
Read More

Upcoming Trade Shows – Advanced Materials

No Events on The List at This Time

Share This